
1

Louisiana State UniversityLouisiana State University

Instructors:
Hao Wang

Floating Point

CSC3501 Computer Organization & Design

2

Louisianan State University

Today: Floating Point
¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

3

Louisianan State University

Fractional binary numbers
¢ What is 1011.1012?

4

Louisianan State University

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

¢ Representation
§ Bits to right of “binary point” represent fractional powers of 2
§ Represents rational number:

• • •

5

Louisianan State University

Fractional Binary Numbers: Examples
¢ Value Representation

5 3/4 101.112
2 7/8 010.1112
1 7/16 001.01112

¢ Observations
§ Divide by 2 by shifting right (unsigned)
§ Multiply by 2 by shifting left
§ Numbers of form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
§ Use notation 1.0 – ε

6

Louisianan State University

Representable Numbers
¢ Limitation #1

§ Can only exactly represent numbers of the form x/2k

§ Other rational numbers have repeating bit representations

§ Value Representation
§ 1/3 0.0101010101[01]…2
§ 1/5 0.001100110011[0011]…2
§ 1/10 0.0001100110011[0011]…2

¢ Limitation #2
§ Just one setting of binary point within the w bits

§ Limited range of numbers (very small values? very large?)

7

Louisianan State University

Today: Floating Point
¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

8

Louisianan State University

IEEE Floating Point
¢ IEEE Standard 754

§ Established in 1985 as uniform standard for floating point arithmetic
§ Before that, many idiosyncratic formats

§ Supported by all major CPUs

¢ Driven by numerical concerns
§ Nice standards for rounding, overflow, underflow
§ Hard to make fast in hardware

§ Numerical analysts predominated over hardware designers in defining
standard

9

Louisianan State University

¢ Numerical Form:
(–1)s M 2E

§ Sign bit s determines whether number is negative or positive
§ Significand M normally a fractional value in range [1.0,2.0).
§ Exponent E weights value by power of two

¢ Encoding
§ MSB s is sign bit s
§ exp field encodes E (but is not equal to E)
§ frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

10

Louisianan State University

Precision options
¢ Single precision: 32 bits

¢ Double precision: 64 bits

¢ Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

11

Louisianan State University

Aligned Memory View
Section 2.4 Floating Point 149

31

s exp frac

30
Single precision

23 022

63

s exp frac (51:32)

62
Double precision

52 3251

31

frac (31:0)

0

Figure 2.32 Standard floating-point formats. Floating-point numbers are represented
by three fields. For the two most common formats, these are packed in 32-bit (single-
precision) or 64-bit (double-precision) words.

The bit representation of a floating-point number is divided into three fields to
encode these values:

. The single sign bit s directly encodes the sign s.

. The k-bit exponent field exp = ek−1 . . . e1e0 encodes the exponent E.

. The n-bit fraction field f rac = fn−1 . . . f1f0 encodes the significand M , but
the value encoded also depends on whether or not the exponent field equals
0.

Figure 2.32 shows the packing of these three fields into words for the two
most common formats. In the single-precision floating-point format (a f l oat
in C), fields s, exp, and f rac are 1, k = 8, and n = 23 bits each, yielding a 32-
bit representation. In the double-precision floating-point format (a doub l e in C),
fields s, exp, and f rac are 1, k = 11, and n = 52 bits each, yielding a 64-bit
representation.

The value encoded by a given bit representation can be divided into three
different cases (the latter having two variants), depending on the value of exp.
These are illustrated in Figure 2.33 for the single-precision format.

Case 1: Normalized Values

This is the most common case. It occurs when the bit pattern of exp is neither
all zeros (numeric value 0) nor all ones (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = e − Bias, where
e is the unsigned number having bit representation ek−1 . . . e1e0 and Bias is a bias
value equal to 2k−1 − 1 (127 for single precision and 1023 for double). This yields
exponent ranges from −126 to +127 for single precision and −1022 to +1023 for
double precision.

The fraction field f rac is interpreted as representing the fractional value f ,
where 0 ≤ f < 1, having binary representation 0.fn−1 . . . f1f0, that is, with the

12

Louisianan State University

“Normalized” Values
¢ When: exp ≠ 000…0 and exp ≠ 111…1

¢ Exponent coded as a biased value: E = Exp – Bias
§ Exp: unsigned value of exp field
§ Bias = 2k-1 - 1, where k is number of exponent bits

§ Single precision: 127 (Exp: 1…254, E: -126…127)
§ Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

¢ Significand coded with implied leading 1: M = 1.xxx…x2
§ xxx…x: bits of frac field
§ Minimum when frac=000…0 (M = 1.0)
§ Maximum when frac=111…1 (M = 2.0 – ε)
§ Get extra leading bit for “free”

v = (–1)s M 2E

13

Louisianan State University

Normalized Encoding Example
¢ Value: float F = 15213.0;

§ 1521310 = 111011011011012

= 1.11011011011012 x 213

¢ Significand
M = 1.11011011011012
frac= 110110110110100000000002

¢ Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

¢ Result:

0 10001100 11011011011010000000000
s exp frac

v = (–1)s M 2E

E = Exp – Bias

14

Louisianan State University

15

Louisianan State University

Denormalized Values
¢ Condition: exp = 000…0

¢ Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
¢ Significand coded with implied leading 0: M = 0.xxx…x2

§ xxx…x: bits of frac

¢ Cases
§ exp = 000…0, frac = 000…0

§ Represents zero value
§ Note distinct values: +0 and –0 (why?)

§ exp = 000…0, frac ≠ 000…0
§ Numbers closest to 0.0
§ Equispaced

v = (–1)s M 2E

E = 1 – Bias

16

Louisianan State University

Special Values
¢ Condition: exp = 111…1

¢ Case: exp = 111…1, frac = 000…0
§ Represents value ¥ (infinity)
§ Operation that overflows
§ Both positive and negative
§ E.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

¢ Case: exp = 111…1, frac ≠ 000…0
§ Not-a-Number (NaN)
§ Represents case when no numeric value can be determined
§ E.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

17

Louisianan State University

The Three Cases

150 Chapter 2 Representing and Manipulating Information

Aside Why set the bias this way for denormalized values?

Having the exponent value be 1 − Bias rather than simply −Bias might seem counterintuitive. We will
see shortly that it provides for smooth transition from denormalized to normalized values.

s 0 0 0 0 0 0 0 0 f

x 0

2. Denormalized

s 1 1 1 1 1 1 1 1 0

3a. Infinity

s 1 1 1 1 1 1 1 1

3b. NaN

s x 0 and x 255 f

1. Normalized

Figure 2.33 Categories of single-precision floating-point values. The value of the
exponent determines whether the number is (1) normalized, (2) denormalized, or (3) a
special value.

binary point to the left of the most significant bit. The significand is defined to be
M = 1 + f . This is sometimes called an implied leading 1 representation, because
we can view M to be the number with binary representation 1.fn−1fn−2 . . . f0. This
representation is a trick for getting an additional bit of precision for free, since we
can always adjust the exponent E so that significand M is in the range 1 ≤ M < 2
(assuming there is no overflow). We therefore do not need to explicitly represent
the leading bit, since it always equals 1.

Case 2: Denormalized Values

When the exponent field is all zeros, the represented number is in denormalized
form. In this case, the exponent value is E = 1 − Bias, and the significand value is
M = f , that is, the value of the fraction field without an implied leading 1.

Denormalized numbers serve two purposes. First, they provide a way to
represent numeric value 0, since with a normalized number we must always have
M ≥ 1, and hence we cannot represent 0. In fact, the floating-point representation
of +0.0 has a bit pattern of all zeros: the sign bit is 0, the exponent field is all
zeros (indicating a denormalized value), and the fraction field is all zeros, giving
M = f = 0. Curiously, when the sign bit is 1, but the other fields are all zeros, we
get the value −0.0. With IEEE floating-point format, the values −0.0 and +0.0
are considered different in some ways and the same in others.

18

Louisianan State University

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

