Floating Point

CSC3501 Computer Organization \& Design

Instructors:
Hao Wang

Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition
- Example and properties

■ Rounding, addition, multiplication

- Floating point in C

■ Summary

Fractional binary numbers

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \times 2^{k}
$$

Fractional Binary Numbers: Examples

- Value
$5 \frac{5}{2} \frac{7 / 4}{7 / 8}$
$17 / 16$

Representation
$\int \frac{101) .1_{2}}{10.111_{2}} \frac{1}{2}+\frac{1}{4}=\frac{3}{4} \rightarrow 5+\frac{3}{4}$

■ Observations

- Divide by 2 by shifting right (unsigned)

- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form x/2k
- Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01] ... 2
- 1/5 0.001100110011[0011]... 2
- 1/10 $0.0001100110011[0011]$... 2

■ Limitation \#2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Today: Floating Point

- Beround: Fractional binary numbers

IEEE floating point standard: Definition

- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
LEEE fO2.x
Wii

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

■ Numerical Form:

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range $(1,0,2,0)$.
- Exponent E weights value by power of two

■ Encoding

- MSB S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

Precision options

■ Single precision: 32 bits

52-bits
■ Extended precision: 80 bits (Intel only)

s	exp	frac	
1	15-bits	63 or 64-bits	

Aligned Memory View

Single precision

| 3130 | 2322 | |
| :--- | :--- | :--- | :--- |
| exp | | frack |

Double-procision

word.
"Normalized" Values

- When: xp $=000 \ldots 0$ and $\exp \neq 111 . .1$

- Exponent coded as a biased value: $\mathrm{E}=$ Exp - Bias
- Exp: unsigned value of exp field
- Bias $=2^{k-1}-1$, where k is number of exponent bits

$$
011
$$

- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double nrecision: 1023 (Exp: 1...2046, E: -1022...1023)

$$
=2^{3-1}-1=3
$$

■ Significand coded with implied leading 1: $\mathrm{M}=1$.xxx....x2

- xxx...x: bits of fac field
- Minimum when frac=000... 0 ($\mathrm{M}=1.0$)
- Maximum when frac=111... $1(\mathrm{M}=2.0-\varepsilon)$
- Get extra leading bit for "free"

Normalized Encoding Example

$$
\begin{aligned}
& \mathrm{v}=(-\mathrm{I})^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}} \\
& \mathrm{E}=\operatorname{Exp}-\mathrm{Bias}
\end{aligned}
$$

Denormalized Values

$$
\begin{gathered}
\mathrm{v}=(-\mathrm{I})^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}} \\
\mathrm{E}=1-\mathrm{Bias}
\end{gathered}
$$

■ Condition: $\exp =000 . . .0$

- Exponent value: $\mathrm{E}=1$ - Bias (instead of $\mathrm{E}=0$ - Bias)

■ Significand coded with implied leading 0: $\mathrm{M}=0 . x x x$...x2

- xxx...x: bits of frac

■ Cases

- $\exp =000 \ldots 0$, frac $=000 \ldots 0$
- Represents zero value
- Note distinct values: +0 and -0 (why?)
- $\exp =000$... 0 , frac $\neq 000$... 0
- Numbers closest to 0.0
- Equispaced

Special Values

■ Condition: $\exp =111$... 1

■ Case: $\exp =111 . . .1$, frac $=000 . . .0$

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: exp = 111...1, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$

The Three Cases

1. Normalized

s	$\neq 0$ and $\neq 255$	f

2. Denormalized

| s | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| f |
| :--- |

3a. Infinity

| s | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | 0

3b. NaN

s	1	1	1	1	1	1	1	1
			$\neq 0$					

Visualization: Floating Point Encodings

