Floating Point

CSC3501 Computer Organization & Design

Instructors:

Hao Wang

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers 2021 1 B What is 1011.101₂? 1011. (012 $(1+\frac{5}{2})_{0}$ (11.525) 10

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Representation

Value

5 3/4

2 7/8

1 7/16

 10.111_{2} 1.0111_{2}

 $\int (101) (1)_2$

計書= -> 5+子

- **Observations**
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

bits

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.0101010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

bits

Today: Floating Point

- Background: Fractional binary numbers
 IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

2EEZ 52.×

Wifi

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Precision options

Single precision: 32 bits

Aligned Memory View

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - **xxx**...**x**: bits of **frac**
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

Condition: exp = 111...1

Case: exp = 111...1, frac = 000...0

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

Case: exp = 111...1, frac ≠ 000...0

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined

• E.g., sqrt(-1),
$$\infty - \infty$$
, $\infty \times 0$

The Three Cases

1. Normalized

s	≠ 0 and ≠ 255	f
---	---------------	---

2. Denormalized

s	0	0	0	0	0	0	0	0	f
---	---	---	---	---	---	---	---	---	---

3a. Infinity

3b. NaN

s	1	1 1	1	1	1	1	1	≠ 0
---	---	-----	---	---	---	---	---	-----

Visualization: Floating Point Encodings

